Биосинтез 2H-меченого инозина высокого уровня дейтерированности - BioinforMatix.ru - портал по биоинформатике, имейджингу и биософту

Биосинтез 2H-меченого инозина высокого уровня дейтерированности - BioinforMatix.ru - портал по биоинформатике, имейджингу и биософту

Биосинтез 2H-меченого инозина высокого уровня дейтерированности

Печать E-mail
Автор О.В. Мосин   
10.07.2009 г.
В настоящее время во всем мире растет интерес к получению природных биологически активных соединений (БАС), меченных стабильными изотопами (2Н, 13С, 15N, 18О   и  др), которые  необходимы для многочисленных биохимических  и  диагностических целей [1], структурно-функциональных исследований [2], а также для изучения клеточного метаболизма [3]. Тенденции к предпочтительному использованию стабильных изотопов по сравнению с радиоактивными аналогами обусловлены отсутствием радиационной опасности  и  возможностью определения локализации метки в молекуле спектроскопией 1Н ЯМР [4, 5], ИК-  и  лазерной спектроскопией [6], а также масс-спектрометрией [7]. Развитие технической  и  компъютерной оснащенности аналитических методов позволило существенно повысить эффективность проведения биологических исследований de novo, а также изучать структуру  и  механизм действия БАС на молекулярном уровне [8]. Большое научно-прикладное значение в этом аспекте имеют соединения нуклеиновой природы, содержащие дейтериевую метку в углеродном скелете молекулы [9]. В частности, 2Н-меченые рибонуклеозиды в ближайшем будущем смогут найти применение в матричных синтезах молекул дейтерированных РНК для изучения их пространственной структуры  и  конформационных изменений [10].

Важным моментом в исследованиях с применением изотопно меченых БАС является их доступность. Дейтериймеченые БАС могут быть синтезированы с использованием химических, ферментативных  и  биосинтетических методов [11, 12]. Однако химические синтезы часто многостадийны, требуют больших расходов ценных реагентов  и  меченых субстратов  и  приводят к конечному продукту, представляющему собой рацемическую смесь D-  и  L-форм, для разделения которых требуются специальные методы [13]. Более тонкие синтезы меченых БАС связаны с комбинацией химических [14]  и  ферментативных подходов [15, 16]. Стратегия синтеза изотопно-меченых БАС более подробно освещена в работе ЛеМастера [17]. 

Для многих научно-практических целей биотехнология предлагает альтернативный химическому синтезу биосинтетический метод получения дейтериймеченых БАС, который приводит к высоким выходам синтезируемых продуктов, к эффективному включению дейтерия в молекулы  и  к сохранению природной конфигурации синтезируемых соединений [18]. Традиционным подходом при этом остается предложенный Креспи метод выращивания штаммов-продуцентов в средах с максимальными концентрациями дейтерия [19]. Однако основным препятствием является недостаток 2Н-меченых ростовых субстратов с высоким уровнем дейтерированности. Прежде всего это связано с ограниченной доступностью  и  дороговизной самого высокоочищенного дейтерия, выделяемого из природных источников. Природная распространенность дейтерия составляет лишь 0.015% (относительно общего количества элемента), однако несмотря на невысокое содержание дейтерия в пробах разработанные в последние годы методы обогащения  и  очистки позволяют получать 2Н-меченые субстраты высокого уровня изотопной чистоты [20].

Начиная с первых экспериментов Даболла  и  Кокса по выращиванию природных объектов в тяжелой воде, разрабатываются подходы с использованием гидролизатов 2Н-меченой биомассы как ростовых субстратов для синтеза штаммов-продуцентов БАС [21, 22]. Однако эксперименты обнаружили бактериостатический эффект 2Н2О, заключающийся в ингибировании жизненно-важных функций клетки, оказываемой 40% 2Н2О на растительные клетки  [23]  и   80-90% 2Н2О на клетки простейших  и  бактерий [24]. Попытки использовать для синтеза в 2Н2О природных объектов различной таксономической принадлежности, включая бактерии, микроводоросли [25]  и  дрожжи [26] предпринимались в течение длительного времени. Однако широкого распространения в биотехнологии они не получили ввиду трудности синтеза, использования сложных комплексных ростовых сред, сложности технологической схемы синтеза  и  т. п. Поэтому целый ряд практических вопросов биосинтеза 2Н-меченых БАС в 2Н2О остается не выясненным.

Более перспективны схемы синтеза с использованием в качестве 2Н-меченых ростовых субстратов биомассы метилотрофных бактерий, ассимилирующих метанол по рибулозо-5-монофосфатному (РМФ)  и  сериновому пути фиксации углерода, интерес к которым возрастает благодаря интенсивному развитию технологии химического синтеза метанола [27, 28]. Уровень ассимиляции биомассы метилотрофов клетками простейших организмов  и  эукариот составляет 85-98%, а их производительность, измеренная по уровню биоконверсии метанола в клеточные компоненты, достигает 50% [29]. Как было показано нами раннее, метилотрофные бактерии очень неприхотливые объекты, растут на минимальных средах с 2-4% метанолом, в которых другие контаминантные бактерии не размножаются  и  достаточно легко адаптируются к максимальным концентрациям 2Н2О, что существенно для синтеза 2Н-меченых БАС [30, 31]. Большой научно-практический интерес к использованию дейтерированной метилотрофной биомассы для синтеза продуцентов рибонуклеозидов определил цель настоящей работы, связанной с изучением принципиальной возможности биосинтеза 2Н-меченого инозина штаммом Bacillus subtilis за счет использования гидролизата факультативных метилотрофных бактерий Brevibacterium methylicum.

 

Последнее обновление ( 10.07.2009 г. )
 
« Пред.   След. »


Copyright 2012 Bioinformatix.ru