Структурная протеомика - BioinforMatix.ru - портал по биоинформатике, имейджингу и биософту

Структурная протеомика - BioinforMatix.ru - портал по биоинформатике, имейджингу и биософту

Структурная протеомика

Печать E-mail
Автор А.А. ЗАМЯТНИН   
23.07.2008 г.
Наиболее яркой особенностью биологии является разнообразие. Оно просматривается на всех уровнях биологической организации (биологические виды, морфология, химическая структура молекул, сеть регуляторных процессов и т.  д .). В полной мере это относится и к белкам. Масштаб их структурного разнообразия до сих пор до конца не выявлен. Достаточно сказать, что число аминокислотных остатков в одном белке может составлять от двух (минимальная структура, имеющая пептидную связь) до десятков тысяч, а белок титин человека содержит 34 350 аминокислотных остатков и на сегодняшний день является рекордсменом – самой крупной из всех известных белковых молекул.
 

Чтобы получить сведения о протеоме, необходимо сначала его выделить и очистить от других молекул. Поскольку число белков во всем протеоме (т.е. во всем организме) весьма велико, обычно берут только часть организма (его орган или ткань) и различными методами выделяют белковую компоненту. За почти 200-летнюю историю изучения белков разработано множество методов выделения белков – от простого солевого осаждения до современных сложных методов, учитывающих различные физические и химические свойства этих веществ. После получения чистой фракции индивидуального белка определяется его химическая структура.

В структурной протеомике проводится определение структуры не одного, а сразу множества белков, и к настоящему времени для этого разработан специальный цикл процедур и создан арсенал соответствующих высокоточных приборов. (Полный набор оборудования для протеомных исследований стоит более одного миллиона долларов.)

Рис. 2. Инструменты протеомики

Рис. 2. Инструменты протеомики

На рис. 2 приведена схема лабораторного цикла от приготовления образца до определения его структуры. После выделения и очистки (на рисунке представлен уже выделенный и очищенный препарат) с помощью двумерного электрофореза проводится разделение белков. Это разделение идет по двум направлениям: в одном разделяются молекулы белка, имеющие разную массу, в другом – различный суммарный электрический заряд. В результате этой тончайшей процедуры на специальном носителе одинаковые молекулы группируются, образуя макроскопические пятна, причем в каждом пятне содержатся только одинаковые молекулы. Число пятен, т.е. число разных белков или пептидов, может составлять многие тысячи (рис. 3, 4), и для их исследования используются автоматические устройства для обработки и анализа. Затем проводится отбор пятен и введение содержащихся в них веществ в сложнейший физический прибор – масс-спектрометр, с помощью которого и определяется химическая (первичная) структура каждого белка.

Рис. 3. Пример двумерной электрофореграммы белков из экстракта печени мыши [8]
Рис. 3. Пример двумерной электрофореграммы белков из экстракта печени мыши [8]

Рис. 4. Пример двумерной электрофореграммы пептидов из цереброспинальной жидкости человека [9]

Рис. 4. Пример двумерной электрофореграммы пептидов из цереброспинальной жидкости человека [9]

Рис. 5. Нуклеотидная последовательность гена, кодирующего сывороточный альбумин человека

Рис. 5. Нуклеотидная последовательность гена, кодирующего сывороточный альбумин человека

Первичную структуру белка можно также определить, пользуясь результатами геномики и биоинформатики. На рис. 5 дана полная структура гена сывороточного альбумина человека. Она содержит 1830 азотистых оснований, кодирующих 610 аминокислотных остатков. Этот ген, как и абсолютное большинство других, начинается с кодона atg, кодирующего остаток метионина, и заканчивается одним из стоп-кодонов, в данном случае taa. Таким образом кодируется структура, состоящая из 609 аминокислотных остатков (рис. 6). Однако эта структура – молекула еще не сывороточного альбумина, а лишь его предшественника. Первые 24 аминокислотных остатка представляют собой так называемый сигнальный пептид, который при переходе молекулы из ядра в цитоплазму отщепляется, и только после этого образуется структура сывороточного альбумина, получаемая при выделении этого белка. В итоге данная молекула содержит 385 аминокислотных остатков.

Рис. 6. Аминокислотная последовательность предшественника сывороточного альбумина человека, транслированная с нуклеотидной последовательности с помощью генетического кода

Рис. 6. Аминокислотная последовательность предшественника сывороточного альбумина человека, транслированная с нуклеотидной последовательности с помощью генетического кода

Рис. 7. Пространственная (третичная) структура молекулы сывороточного альбумина человека

Рис. 7. Пространственная (третичная) структура молекулы сывороточного альбумина человека

Однако аминокислотная последовательность не раскрывает пространственную структуру белка. С точки зрения термодинамики, вытянутая линейная структура энергетически невыгодна, и поэтому она специфическим для каждой последовательности образом сворачивается в уникальную пространственную структуру, которая может быть определена с помощью двух мощных физических методов – рентгеноструктурного анализа и метода ядерного магнитного резонанса (ЯМР-спектроскопии). С помощью первого из них определены пространственные структуры уже нескольких тысяч белков, в том числе и сывороточного альбумина человека, изображение которого представлено на рис. 7. Эта структура, в отличие от первичной (аминокислотной последовательности), называется третичной и в ней хорошо видны спирализованные участки, являющиеся элементами вторичной структуры.

Таким образом, задача структурной протеомики сводится к выделению, очистке, определению первичной, вторичной и третичной структур всех белков живого организма, а ее основными средствами являются двумерный электрофорез, масс-спектрометрия и биоинформатика.

 

Читайте также:

Последнее обновление ( 06.04.2009 г. )
 
« Пред.   След. »